obtained from theoretical simulations of the electrostatic perturbations modulated in heme a and copper redox centers by positively charged Ca²⁺ and replacement of D477A. Energies of electrostatic interactions were calculated according to DelPhi Program. It should be empathized that no effect has been found upon addition of Ca²⁺ or chelators to the WT COX in which Ca²⁺ is not removed by complexons. D477A COX was kindly provided by the Laboratory of Prof. M. Wikstrom from University of Helsinki.

doi:10.1016/j.bbabio.2008.05.433

C2.8 The relationship between cellular oxygen consumption and cytochrome oxidase oxidation state

Roger Springett, Michelle Abajian, Maureen O. Ripple Dartmouth Medical School, Hanover, NH, USA

E-mail: RSpringett@Dartmouth.edu

The aim of this study was to examine oxidation changes in Cytochrome Oxidase (CytOx) at physiological proton motive force (ΔP) and when ΔP and oxygen consumption (VO₂) were varied using oligomycin followed by an FCCP titration. Measurements were made on

RAW cells in a custom-built respirometer. Analysis of the Cyta spectral region revealed two components, one fitted well by the fully reduced minus oxidized spectrum of isolated CytOx and another with a peak at 601.3 nm. Within the framework of the neoclassical model, we assign these components to and respectively. Results are mean \pm SD (n=6).

The cells contained 33.8 ± 1.8 pmol of CytOx per 2×10^7 cells, baseline VO₂ was 16.7 ± 1.6 O₂/CytOx/s and were $8.7\pm1.4\%$ and 6.0 ± 3.0 occupied respectively. Under anoxic conditions, and were 69.0 ± 9.8 and $28.7\pm6.3\%$ occupied respectively when ΔP was maintained by glycolytic ATP reversing the ATP synthase, and 13.7 ± 6.9 and $86.1\pm7.1\%$ occupied respectively when the membrane potential was collapsed with FCCP or oligomycin. At normal oxygenation, VO₂ fell to $4.8\pm4.2O_2$ /CytOx/s after inhibition by oligomycin, increased to a maximum of $38.2\pm4.2O_2$ /CytOx/s with increasing FCCP and then declined upon further addition of FCCP, and occupancy increased linearly with VO₂ from $6.0\pm1.3\%$ to $12.6\pm1.6\%$ and $4.1\pm2.1\%$ to $5.1\pm2.2\%$ occupied respectively as VO₂ varied from minimum to maximum. These results are consistent with VO₂ being regulated by ΔP varying the entry of electrons into the binuclear center.

doi:10.1016/j.bbabio.2008.05.434